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Abstract

Recent technological advances have produced network
interfaces that provide users with very low-latency ac-
cess to the memory of remote machines. We examine
the impact of such networks on the implementation and
performance of software DSM. Specifically, we compare
two DSM systems—Cashmere and TreadMarks—on a 32-
processor DEC Alpha cluster connected by a Memory
Channel network.

Both Cashmere and TreadMarks use virtual memory to
maintain coherence on pages, and both use lazy, multi-
writer release consistency. The systems differ dramati-
cally, however, in the mechanisms used to track sharing
information and to collect and merge concurrent updates
to a page, with the result that Cashmere communicates
much more frequently, and at a much finer grain.

Our principal conclusion is that low-latency networks
make DSM based on fine-grain communication compet-
itive with more coarse-grain approaches, but that fur-
ther hardware improvements will be needed before such
systems can provide consistently superior performance.
In our experiments, Cashmere scales slightly better than
TreadMarks for applications with fine-grain interleaving
of accesses to shared data. At the same time, it is severely
constrained by limitations of the current Memory Channel
hardware. On average, performance is better for Tread-
Marks. Because most of its messages require remote pro-
cessing, TreadMarks depends critically on the latency of
interrupts: performance improves greatly when proces-
sors poll for messages.
Keywords: Distributed Shared Memory, Memory-
Mapped Network Interface, Cashmere, TreadMarks.

1 Introduction

Distributed shared memory (DSM) is an attractive de-
sign alternative for large-scale shared memory multi-
processing. Traditional DSM systems rely on virtual
memory hardware and simple message passing to im-
plement shared memory. State-of-the-art DSM systems
(e.g. TreadMarks [1, 19]) employ sophisticated protocol
optimizations, such as relaxed consistency models, mul-
tiple writable copies of a page, and lazy processing of
all coherence-related events. These optimizations recog-
nize the very high (millisecond) latency of communica-
tion on workstation networks; their aim is to minimize
the frequency of communication, even at the expense of
additional computation.

Recent technological advances, however, have led to
the commercial availability of inexpensive workstation
networks on which a processor can access the memory
of a remote node safely from user space, at a latency
two to three orders of magnitude lower than that of tra-

ditional message passing. These networks suggest the
need to re-evaluate the assumptions underlying the design
of DSM protocols, and specifically to consider protocols
that communicate at a much finer grain. The Cashmere
system employs this sort of protocol. It uses directories
to keep track of sharing information, and merges concur-
rent writes to the same coherence block via write-through
to a unique (and possibly remote) main-memory copy of
each page. Simulation studies indicate that on an “ideal”
remote-write network Cashmere will significantly outper-
form other DSM approaches, and will in fact approach the
performance of full hardware cache coherence [20, 21].

In this paper we compare implementations of Cash-
mere and TreadMarks on a 32-processor cluster (8 nodes,
4 processors each) of DEC AlphaServers, connected by
DEC’s Memory Channel [15] network. Memory Channel
allows a user-level application to write to the memory of
remote nodes. The remote-write capability can be used for
(non-coherent) shared memory, for broadcast/multicast,
and for very fast user-level messages. Remote reads are
not directly supported. Where the original Cashmere pro-
tocol used remote reads to access directory information,
we broadcast directory updates on the Memory Channel.
Where the original Cashmere protocol would read the con-
tents of a page from the home node, we ask a processor
at the home node to write the data to us. In TreadMarks,
we use the Memory Channel simply to provide a very fast
messaging system.

Our performance results compare six specific protocol
implementations: three each for TreadMarks and Cash-
mere. For both systems, one implementation uses inter-
rupts to request information from remote processors, while
another requires processors to poll for remote requests at
the top of every loop. The third TreadMarks implemen-
tation uses DEC’s standard, kernel-level implementation
of UDP. The third Cashmere implementation dedicates
one processor per node to handling remote requests. This
approach is similar to polling, but without the additional
overhead and the unpredictability in response time: it is
meant to emulate a hypothetical Memory Channel in which
remote reads are supported in hardware. The emulation is
conservative in the sense that it moves data across the lo-
cal bus twice (through the processor registers), while true
remote reads would cross the bus only once.

In general, both Cashmere and TreadMarks provide
good performance for many of the applications in our
test suite. Low interrupt overhead is crucial to the perfor-
mance and scalability of TreadMarks, resulting in greatly
improved results with polling. The difference between
interrupts and polling has a smaller effect on performance
in Cashmere: fewer interrupts are required than in Tread-
Marks, since Cashmere takes advantage of remote mem-
ory access for program and meta-data resulting in fewer
messages requiring a reply. The Cashmere protocol scales
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better than TreadMarks for applications with relatively
fine-grain synchronization, or with false sharing within a
page. However, for applications with low communication
requirements, performance is hurt due to the cost of “dou-
bling” writes to the home node as well as the need to check
directory entries for data that is not actively shared.

Three principal factors appear to contribute to making
the differences between TreadMarks and Cashmere on the
Memory Channel smaller than one would expect on an
“ideal” remote-memory-access network. First, the current
Memory Channel has relatively modest cross-sectional
bandwidth, which limits the performance of write-through.
Second, it lacks remote reads, forcing Cashmere to copy
pages to local memory (rather than fetching them incre-
mentally in response to cache misses), and to engage the
active assistance of a remote processor in order to make
the copy. With equal numbers of compute processors,
Cashmere usually performs best when an additional pro-
cessor per node is dedicated to servicing remote requests,
implying that remote-read hardware would improve per-
formance further. Third, our processors (the 21064A)
have very small first-level caches. Our write-doubling
mechanism increases the first-level working set for cer-
tain applications beyond the 16K available, dramatically
reducing performance. The larger caches of the 21264
should largely eliminate this problem.

We are optimistic about the future of Cashmere-like
systems as network interfaces continue to evolve. Based
on previous simulations [21], it is in fact somewhat sur-
prising that Cashmere performs as well as it does on the
current generation of hardware. The second-generation
Memory Channel, due on the market very soon, will have
something like half the latency, and an order of magnitude
more bandwidth. Finer-grain DSM systems are in a po-
sition to make excellent use of this sort of hardware as it
becomes available.

The remainder of this paper is organized as follows.
We present the coherence protocols we are evaluating in
section 2. In section 3 we discuss our implementations of
the protocols, together with the mechanisms we employed
(write doubling, page copying, directory broadcast, and
remote read emulation) to overcome limitations of the
hardware. Section 4 presents experimental results. The
final two sections discuss related work and summarize our
conclusions.

2 Protocols

In this section, we discuss the TreadMarks and Cashmere
coherence protocols. Both systems maintain coherence
at page granularity, employ a relaxed consistency model,
and allow multiple concurrent writers to the same coher-
ence block. There are significant differences, however, in

the way sharing information for coherence blocks is main-
tained, and in the way writes to the same coherence block
by multiple processors are merged.

2.1 Cashmere

Cashmere maintains coherence information using a dis-
tributed directory data structure. For each shared page
in the system, a single directory entry indicates the page
state. For a 32-processor system, the entry fits in a 64-bit
longword that encodes the page state (2 bits), the id of the
home node for the page (5 bits), whether the home node
is still the original default or has been set as the result of
a “first touch” heuristic (1 bit), the number of processors
writing the page (5 bits), the id of the last processor to take
a write fault on the page (5 bits), a bitmask of the proces-
sors that have a copy of the page (32 bits), the number of
processors that have a copy of the page (5 bits), a lock bit
used for obtaining exclusive access to a directory entry,
and an initialization bit indicating whether the directory
entry has been initialized or not. Directory space overhead
for the 8K pages supported by DEC Unix is only about
1%, and would be smaller if we did not have to replicate
the directory on each of our eight nodes.

A page can be in one of three states: Uncached – No
processor has a mapping to the page. This is the initial
state for all pages. Shared – One or more processors have
mappings to the page, but none of them has made changes
that need to be globally visible. Weak – Two or more
processors have mappings to the page and at least one has
made changes that need to be globally visible, because
of a subsequent release. Notice that we have omitted the
dirty state present in some previous Cashmere designs.
We have chosen to leave a page in the shared state when
there is a single processor reading and writing it; we check
at release synchronization points to see if other processors
have joined the sharing set and need to be told of changes.

In addition to the directory data structure, each proces-
sor also holds a globally accessible weak list that indicates
which of the pages with local mappings are currently in
the weak state. Protocol operations happen in response to
four types of events: read page faults, write page faults,
acquire synchronization operations, and release synchro-
nization operations.

When a processor takes a read page fault it locks the
directory entry representing the page, adds itself to the
sharing set, increments the number of processors that have
a copy of the page, and changes the page state to shared
if it was uncached. It also inserts the page number in
the local weak list if the page was found in the weak
state. The directory operation completes by unlocking
the entry. Locally, the processor creates a mapping for
the page and re-starts the faulting operation. Ideally, the
mapping would allow the processor to load cache lines
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from the home node on demand. On the Memory Channel,
which does not support remote reads, we must copy the
page to local memory (see below). A write page fault
is treated the same as a read page fault, except that the
processor also inserts the page number in a local list called
the write list.

At an acquire synchronization operation the processor
traverses its weak list and removes itself from the sharing
set of each page found therein. The removal operation
requires that the processor obtain the lock for the corre-
sponding directory entry, modify the bitmask of sharing
processors, decrement the count of processors that have a
copy of the page, and return the page to the uncached state
if this was the last processor with a mapping.

At a release synchronization operation the processor
traverses the write list and informs other processors of the
writes it has performed since the previous release opera-
tion. For each entry in the write list the processor acquires
the lock for the corresponding directory entry. If other
processors are found to be sharing the page, the releaser
changes the page state to weak and appends a notice to the
weak list of every sharing processor. No state change or
notices are needed if the page is already in the weak state.
We also apply an optimization for single-writer sharing.
If a processor is the only writer of a page it never needs
to invalidate itself, since it has the most up-to-date version
of the data, and thus it refrains from placing a notice in its
own weak list. Furthermore it does not move the page to
the weak state since that would prevent other (future) writ-
ers from sending write notices that the first writer needs to
see. The count of processors writing a page and the id of
the last processor to write the page, found in the directory
entry, allow us to identify this particular sharing pattern.

Ideally, a releasing processor would inspect the dirty
bits of TLB/page table entries to determine which pages
have been written since the previous release. Pages could
then be mapped writable at read page faults, avoiding the
need to take an additional fault (to place the page in the
write list) if a write came after the read. Similarly, a single
writer would clear its dirty bit and then leave its copy of
the page writable at a release operation. Unfortunately,
we do not currently have access to the dirty bits on our
AlphaServers. We therefore map a page read-only on a
read page fault, and wait for a subsequent write fault (if
any) to add the page to the write list. At a release, a single
writer leaves the page writable (to avoid the overhead of
repeated faults), but must then leave the page in its write
list and recheck for readers at subsequent synchronization
points. As a result, a processor that writes a page once
and then keeps it for a very long time may keep the page
in the weak state all that time, forcing readers of the page
to perform unnecessary invalidations at every subsequent
acquire. Similarly, a logically shared page that is in fact
used only by one processor (e.g. data internal to a band

in SOR) will remain in the shared state forever, forcing
the processor that uses the page to inspect the directory
at every release, just to make sure no readers have arrived
and necessitated a transition to the weak state. We expect
to overcome these limitations shortly by using dirty bits.

The final issue to be addressed is the mechanism that al-
lows a processor to obtain the data written by other proces-
sors. For each page there is a unique home node to which
processors send changes on the fly. Because acquires and
releases serialize on access to a page’s directory entry, a
processor that needs data from a page is guaranteed that
all writes in its logical past are reflected in the copy at the
home node. On a network with remote reads there would
be only one copy of each page in main memory—namely
the copy at the home node. Every page mapping would
refer to this page; cache fills would be satisfied from this
page; and the collection of changes would happen via the
standard cache write-through or write-back. On the Mem-
ory Channel, we must create a local copy of a page in
response to a page fault. Normal write-back then updates
this local copy. To update the copy at the home node, we
insert additional code into the program executable at every
shared memory write.

The choice of home node for a page can have a signif-
icant impact on performance. The home node itself can
access the page directly, while the remaining processors
have to use the slower Memory Channel interface. We
assign home nodes at run-time, based on which processor
first touches a page after the program has completed any
initialization phase [27].

More detailed information on the Cashmere protocol
(and its network-interface-specific variants) can be found
in other papers [21, 20].

2.2 TreadMarks

TreadMarks is a distributed shared memory system based
on lazy release consistency (LRC) [19]. Lazy release
consistency is a variant of release consistency [24]. It
guarantees memory consistency only at synchronization
points and permits multiple writers per coherence block.
Lazy release consistency divides time on each node into
intervals delineated by remote synchronization operations.
Each interval is represented by a vector of timestamps,
with entry i on processor j representing the most recent
interval on processor i that logically precedes the current
interval on processor j. The protocol associates writes to
shared pages with the interval in which they occur. When a
processor takes a write page fault, it creates a write notice
for the faulting page and appends the notice to a list of
notices associated with its current interval.

When a processor acquires a lock, it sends a copy of
its current vector timestamp to the previous lock owner.
The previous lock owner compares the received timestamp
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with its own, and responds with a list of all intervals (and
the write notices associated with them) that are in the
new owner’s past, but that the new owner has not seen.
The acquiring processor sets its vector timestamp to be
the pairwise maximum of its old vector and the vector
of the previous lock owner. It also incorporates in its
local data structures all intervals (and the associated write
notices) sent by the previous owner. Finally, it invalidates
(unmaps) all pages for which it received a write notice.
The write notice signifies that there is a write to the page
in the processor’s logical past and that the processor needs
to bring its copy of the page up to date.

To support multiple writers to a page, each processor
saves a pristine copy of a page called a twin before it writes
the page. When asked for changes, the processor compares
its current copy of the page to the page’s twin. The result
of the comparison is a list of modified addresses with the
new contents, called a diff. There is one diff for every
write notice in the system. When a processor takes a read
page fault (or a write page fault on a completely unmapped
page), it peruses its list of write notices and makes requests
for all unseen modifications. It then merges the changes
into its local copy in software, in the causal order defined
by the timestamps of the write notices.

Barrier synchronization is dealt with somewhat differ-
ently. Upon arrival at a barrier, all processors send their
vector timestamps (and intervals and write notices), to a
barrier manager, using a conservative guess as to the con-
tents of the manager’s vector timestamp. The manager
merges all timestamps, intervals, and write notices into its
local data structures, and then sends to each processor its
new updated timestamp along with the intervals and write
notices that the processor has not seen.

The TreadMarks protocol avoids communication at the
time of a release, and limits communication to the pro-
cesses participating in a synchronization operation. How-
ever, because it must guarantee the correctness of arbitrary
future references, the TreadMarks protocol must send no-
tices of all logically previous writes to synchronizing pro-
cessors even if the processors have no copy of the page to
which the write notice refers. If a processor is not going
to acquire a copy of the page in the future (something the
protocol cannot of course predict), then sending and pro-
cessing these notices may constitute a significant amount
of unnecessary work, especially during barrier synchro-
nization, when all processors need to be made aware of all
other processors’ writes. Further information on Tread-
Marks can be found in other papers [1].

3 Implementation Issues

3.1 Memory Channel

Memory Channel
Address Space
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Figure 1: Memory Channel space. The lined region is
mapped for both transmit and receive on node 1 and for
receive on node 2. The gray region is mapped for receive
on node 1 and for transmit on node 2.

Digital Equipment’s Memory Channel (MC) network pro-
vides applications with a global address space using mem-
ory mapped regions. A region can be mapped into a pro-
cess’s address space for transmit, receive, or both. Virtual
addresses for transmit regions map into physical addresses
located in I/O space, and, in particular, on the MC’s PCI
adapter. Virtual addresses for receive regions map into
physical RAM. Writes into transmit regions are collected
by the source MC adapter, forwarded to destination MC
adapters through a hub, and transferred via DMA to re-
ceive regions with the same global identifier (see Figure 1).
Regions within a node can be shared across processors and
processes. Writes originating on a given node will be sent
to receive regions on that same node only if loop-back
has been enabled for the region. In our implementation
of Cashmere, we use loop-back only for synchronization
primitives. TreadMarks does not use it at all.

Unicast and multicast process-to-process writes have a
latency of 5.2 �s on our system (latency drops below 5�s
for other AlphaServer models). Our MC configuration can
sustain per-link transfer bandwidths of 30 MB/s with the
limiting factor being the 32-bitAlphaServer 2100 PCI bus.
MC peak aggregate bandwidth is also about 32 MB/s.

Memory Channel guarantees write ordering and local
cache coherence. Two writes issued to the same transmit
region (even on different nodes) will appear in the same
order in every receive region. When a write appears in a
receive region it invalidates any locally cached copies of
its line.

3.2 Remote-Read Mechanisms

Although the first-generation Memory Channel supports
remote writes, it does not support remote reads. To read
remote data, a message passing protocol must be used to
send a request to a remote node. The remote node responds
by writing the requested data into a region that is mapped
for receive on the originating node.
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label:

ldq $7, 0($13) ; Check poll flag.
beq $7, nomsg ; If message,
jsr $26, handler ; call handler.
ldgp $29, 0($26)

nomsg:

Figure 2: Polling. Polling code is inserted at all interior,
backward-referenced labels. The address of the polling
flag is preserved in register $13 throughout execution.

Three different mechanisms can be used to process
transfer requests. The most obvious alternative uses a MC
provided inter-node interrupt to force a processor on the
remote node into a handler. The second alternative is for
processes to poll for messages on a periodic basis (e.g. at
the tops of loops). The third alternative is to dedicate one
processor on every node to servicing remote requests, and
have that processor poll on a continual basis.

Memory Channel allows a processor to trigger an inter-
node interrupt by means of a remote write for which the re-
cipient has created a special receive region mapping. This
capability is exported to applications as an imc kill
function which is called with a remote host name, process
identifier and UNIX signal number. Because the inter-
rupt must be filtered up through the kernel to the receiving
process, inter-node signals have a cost of almost 1 mil-
lisecond.

Polling requires instrumentation that checks the mes-
sage receive region frequently, and branches to a handler
if a message has arrived. Applicationscan be instrumented
either by hand or automatically. We instrument the pro-
tocol libraries by hand and use an extra compilation pass
between the compiler and assembler to instrument appli-
cations. The instrumentation pass parses the compiler-
generated assembly file and inserts polling instrumenta-
tion at the start of all labeled basic blocks that are internal
to a function and are backward referenced—i.e. at tops
of all loops. The polling instruction sequence appears in
Figure 2.

Dedicating a processor to polling on each node is the
least intrusive mechanism: it requires neither application
changes nor expensive interrupt handlers. Of course, a
dedicated processor is unavailable for regular computa-
tion. In general, we would not expect this to be a produc-
tive way to use an Alpha processor (though in a few cases
it actually leads to the best program run-times). Our intent
is rather to simulate the behavior of a hypothetical (and
somewhat smaller) Memory Channel system that supports
remote reads in hardware.

3.3 Cashmere

Memory Channel
Shared Regions
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Shared Memory

Figure 3: Cashmere process address space. Writes are
duplicated from the private copy of a shared memory page
to the corresponding page in the MC regions. MC regions
are mapped for receive on home nodes and for transmit on
all other nodes.

Cashmere takes advantage of MC remote writes to collect
shared memory writes and to update the page directory.
The Cashmere virtual address space consists of four ar-
eas (see Figure 3). The first area consists of process
private memory. The second contains Cashmere meta-
data, including the page directory, synchronization mem-
ory, and protocol message-passing regions (for page fetch
requests). The other two areas contain Cashmere shared
memory. The higher of these two contains the processor’s
local copies of shared pages and the lower contains MC
regions used to maintain memory consistency between
nodes.

The page directory and synchronization regions are
mapped twice on each node: once for receive and once
for transmit. Remote meta-data updates are implemented
by writing once to the receive region in local memory and
again to the write region for transmit. MC loop-back is not
used because it requires twice the PCI bandwidth: once
for transmit and once for receive, and because it does not
guarantee processor consistency.

For every actively-shared page of memory, one page is
allocated in the process’s local copy area and another in
the MC area. If a process is located on the home node for
a shared page, the MC page is mapped for receive. If a
process is not located on the home node, then the MC page
is mapped for transmit. In the current version of Digital
Unix, the number of separate Memory Channel regions is
limited by fixed-size kernel tables. As a temporary expe-
dient, each MC region in our Cashmere implementation
contains 32 contiguous pages, called a superpage. Super-
pages have no effect on coherence granularity: we still
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srl $3, 40, $7 ; Create page offset
sll $7, 13, $7 ; if shared write.
subq $3, $7, $7

zap $7, 0x20, $7 ; Subtract MC offset.
stq $1, 0($3) ; Original write.
stq $1, 0($7) ; Doubled write.

Figure 4: Write Doubling, in this case for an address in
register 3 with 0 displacement.

map and unmap individual pages. They do, however, con-
strain our “first touch” page placement policy: all 32 pages
of a given superpage must share the same home node. We
plan to modify the kernel to allow every page to lie in a
separate region.

3.3.1 Write Doubling

All writes to shared memory consist of an original write
to the private copy and a duplicate write to the MC area.
The duplicate write and associated address arithmetic are
inserted into applications by parsing and updating assem-
bly code, in a manner analagous to that used to insert
polling. As in polling, we rely on the GNU C compiler’s
ability to reserve a register for use in the instrumented
code. Single-processor tests confirm that the additional
register pressure caused by the reservation has a mini-
mal impact on the performance of our applications. A
compiler-supported Cashmere implementation would be
able to use one of the registers ($7) for other purposes as
well.

Figure 4 contains the assembly sequence for a doubled
write. The sequence relies on careful alignment of the
Cashmere shared-memory regions. The local copy of a
shared page and its corresponding Memory Channel region
differ in address by 0x01000000 2000. The high bit in the
offset places the addresses far enough apart that all of
shared memory can be contiguous. The low bit in the
offset increases the odds that the two addresses will map
to different locations in the first-level cache on the home
node. To obtain the address to which to double a write,
we use the value of the 40th bit to mask out the 13th bit.
We also clear the 40th bit. For a truly private reference,
which should not be doubled, these operations have no
effect, because the 40th bit is already 0. In this case, the
private address is written twice. By placing the address
arithmetic before the original write, so that the writes are
consecutive instructions, we make it likely that spurious
doubles of private writes will combine in the processor’s
write buffer. As an obvious optimization, we refrain from
doubling writes that use the stack pointer or global pointer
as a base.

3.3.2 Page Directory and Locks

Page directory access time is crucial to the overall perfor-
mance of Cashmere. Directory entries must be globally
consistent and inexpensive to access. As mentioned previ-
ously, the page directory is mapped into both receive and
transmit regions on each node. Each entry consists of a
single 64-bit value and a lock.

Both application and protocol locks are represented by
an 8-entry array in Memory Channel space, and by a test-
and-set flag on each node. To acquire a lock, a process
first acquires the per-node flag using load-linked/store-
conditional. It then sets the array entry for its node, waits
for the write to appear via loop-back, and reads the whole
array. If its entry is the only one set, then the process has
acquired the lock. Otherwise it clears its entry, backs off,
and tries again. In the absence of contention, acquiring and
releasing a lock takes about 11 �s. Digital Unix provides
a system-call interface for Memory Channel locks, but
while its internal implementation is essentially the same
as ours, its latency is more than 280 �s.

3.4 TreadMarks

We have modified TreadMarks version 0.10.1 to use the
MC architecture for fast user-level messages. Only the
messaging layer was changed: all other aspects of the
implementation are standard. In particular, we do not
use broadcast or remote memory access for either syn-
chronization or protocol data structures, nor do we place
shared memory in Memory Channel space.

We present results for three versions of TreadMarks.
The first uses DEC’s kernel-level implementation of UDP
for the Memory Channel, with regular sig io interrupts.
The second uses user-level message buffers, and sends
imc kill interrupts (see Section 3.2) to signal message
arrival. The third is built entirely in user space, with
polling (see Section 3.2) to determine message arrival.
Interrupts (and in particular signals) for the first two im-
plementations are expensive in Digital Unix, and are a
principal factor limiting scalability. While polling in our
implementation makes use of the Memory Channel hard-
ware, it could also be implemented (at somewhat higher
cost) on a more conventional network. In our experiments
it allows us to separate the intrinsic behavior of the Tread-
Marks protocol from the very high cost of signals on this
particular system.

The UDP version of TreadMarks creates a pair of UDP
sockets between each pair of participating processors: a
request socket on which processor A sends requests to pro-
cessor B and receives replies, and a reply socket on which
processor A receives requests from processor B and sends
replies. The MC version replaces the sockets with a pair
of message buffers. Two sense-reversing flags (variables
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allocated in Memory Channel space) provide flow con-
trol between the sender and the receiver: the sender uses
one flag to indicate when data is ready to be consumed;
the receiver uses the other to indicate when data has been
consumed. Reply messages do not require interrupts or
polling: the requesting processor always spins while wait-
ing for a reply. Because both DEC’s MC UDP and our
user-level buffers provide reliable delivery, we have dis-
abled the usual timeout mechanism used to detect lost
messages in TreadMarks. To avoid deadlock due to buffer
flow-control, we have made the request handler re-entrant:
whenever it spins while waiting for a free buffer or for an
expected reply it also polls for, and queues, additional
incoming requests.

In both TreadMarks and Cashmere each application-
level process is bound to a separate processor of the Al-
phaServer. The binding improves performance by taking
advantage of memory locality, and reduces the time to de-
liver a page fault. To minimize latency and demand for
Memory Channel bandwidth, we allocate message buffers
in ordinary shared memory, rather than Memory Channel
space, whenever the communicating processes are on the
same AlphaServer. This is the only place in either Tread-
Marks or Cashmere that our current implementations take
advantage of the hardware coherence available withineach
node.

4 Performance Evaluation

Our experimental environment consists of eight DEC Al-
phaServer 2100 4/233 computers. Each AlphaServer is
equipped with four 21064A processors operating at 233
MHz and with 256MB of shared memory, as well as a
Memory Channel network interface.

For Cashmere, we present results for three different
mechanisms to handle remote requests—a dedicated “pro-
tocol processor” (csm pp), interrupts (csm int), and
polling (csm poll). The protocol processor option ap-
proximates the ability to read remote memory in hard-
ware. For TreadMarks, we present results for three dif-
ferent versions—one that uses DEC’s kernel-level MC
UDP protocol stack with interrupts (tmk udp int), one
that uses user-level messaging on MC with interrupts
(tmk mc int), and one that uses user-level messaging
on MC with polling (tmk mc poll). Both TreadMarks
and Cashmere treat every processor as a separate protocol
node; neither takes advantage of hardware shared memory
for user data sharing within a node.

4.1 Basic Operation Costs

Memory protection operations on the AlphaServers cost
about 62 �s. Page faults cost 89 �s. It takes 69 �s to

deliver a signal locally, while remote delivery costs the
sender 584 �s and incurs an end-to-end latency of about
1 ms. The overhead for polling ranges between 0% and
15% compared to a single processor execution, depending
on the application.

The overhead for write doubling ranges between 0%
and 39% compared to a single processor execution for
Cashmere, depending on the application. Directory entry
modification takes 17 �s for Cashmere. Most of that time,
11 �s, is spent acquiring and releasing the directory entry
lock. The cost of a twinning operation on an 8K page in
TreadMarks is 362 �s. The cost of diff creation ranges
from 289 to 534 �s per page, depending on the size of the
diff.

Table 1 provides a summary of the minimum cost of
page transfers and of user-level synchronization opera-
tions for the different implementations of Cashmere and
TreadMarks. All times are for interactions between two
processors. The barrier times in parentheses are for a 16
processor barrier.

4.2 Application Characteristics

We present results for 8 applications:

SOR: a Red-Black Successive Over-Relaxation program
for solving partial differential equations. In our par-
allel version, the program divides the red and black
arrays into roughly equal size bands of rows, assign-
ing each band to a different processor. Communi-
cation occurs across the boundaries between bands.
Processors synchronize with barriers.

LU: a kernel from the SPLASH-2 [38] benchmark, which
for a given matrix A finds its factorization A � LU ,
where L is a lower-triangular matrix and U is up-
per triangular. This program promotes temporal and
spatial locality by dividing the matrix A into square
blocks. Each block is “owned” by a particular proces-
sor, which performs all computation on it. The “first
touch” location policy in Cashmere ensures that a
processor serves as home node for the blocks it owns.

Water: a molecular dynamics simulation from the
SPLASH-1 [35] benchmark suite. The main shared
data structure is a one-dimensional array of records,
each of which represents a water molecule. The par-
allel algorithm statically divides the array into equal
contiguous chunks, assigning each chunk to a differ-
ent processor. The bulk of the interprocessor com-
munication happens during a computation phase that
computes intermolecular forces. Each processor up-
dates the forces between each of its molecules and
each of then�2 molecules that follow it in the array in
wrap-around fashion. The processor accumulates its
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Operation Time (�s)
csm pp csm int csm poll tmk udp int tmk mc int tmk mc poll

Lock Acquire 11 11 11 1362 976 79
Barrier 90 (173) 88 (208) 86 (205) 987 (8006) 568 (5432) 75 (1213)
Page Transfer 736 1960 742 2932 1962 784

Table 1: Cost of Basic Operations

forces locally and then acquires per-processor locks
to update the globally shared force vectors.

TSP: a branch-and-bound solution to the traveling sales-
man problem. The major data structures are a pool
of partially evaluated tours, a priority queue contain-
ing pointers to tours in the pool, a stack of pointers
to unused tour elements in the pool, and the current
shortest path. All the major data structures are shared.
Locks are used to insert and delete unsolved tours in
the priority queue. Updates to the shortest path are
also protected by a separate lock. The algorithm is
non-deterministic in the sense that the earlier some
processor stumbles upon the shortest path, the more
quickly other parts of the search space can be pruned.

Gauss: Gauss solves a system of linear equations
AX � B through Gaussian Elimination and back-
substitution. The Gaussian elimination phase makes
A upper triangular. Each row of the matrix is the re-
sponsibility of a single processor. For load balance,
the rows are distributed among processors cyclically.
A synchronization flag for each row indicates when
it is available to other rows for use as a pivot. The
algorithm performs a column operation only if the
pivot for a given row is zero. An additional vector,
SWAP, stores the column swaps in the order that they
occur. A barrier separates the above phase from the
back-substitution step, which serves to diagonalize
A. The division of work and synchronization pattern
is similar to the first step. If there were any column
operations performed in the first step these operations
(which are stored in the vector SWAP) have to be car-
ried out in reverse order on the vector X to calculate
the final result.

ILINK: ILINK [9, 23] is a widely used genetic linkage
analysis program that locates disease genes on chro-
mosomes. The input consists of several family trees.
The main data structure is a pool of sparse genarrays.
A genarray contains an entry for the probability of
each genotype for an individual. As the program tra-
verses the family trees and visits each nuclear family,
the pool of genarrays is reinitialized for each person
in the nuclear family. The computation either updates
a parent’s genarray conditioned on the spouse and all

children, or updates one child conditioned on both
parents and all the other siblings. We use the parallel
algorithm described by Dwarkadas et al. [12]. Up-
dates to each individual’s genarray are parallelized.
A master processor assigns individual genarray ele-
ments to processors in a round robin fashion in or-
der to improve load balance. After each processor
has updated its elements, the master processor sums
the contributions. The bank of genarrays is shared
among the processors, and barriers are used for syn-
chronization. Scalability is limited by an inherent
serial component and inherent load imbalance.

Barnes: an N-body simulation from the SPLASH-1 [35]
suite, using the hierarchical Barnes-Hut Method.
Each leaf of the program’s tree represents a body,
and each internal node a “cell”: a collection of bod-
ies in close physical proximity. The major shared
data structures are two arrays, one representing the
bodies and the other representing the cells. The pro-
gram has four major phases in each time step, to
(1) construct the Barnes-Hut tree, (2) partition the
bodies among the processors, (3) compute the forces
on a processor’s bodies, and (4) update the positions
and the velocities of the bodies. Phase (1) executes
on only the master process. Parallel computation
in the other phases is dynamically balanced using
the cost-zone method, with most of the computation
time spent in phase (3). Synchronization consists of
barriers between phases.

Em3d: a program to simulate electromagnetic wave prop-
agation through 3D objects [11]. The major data
structure is an array that contains the set of magnetic
and electric nodes. These are equally distributed
among the processors in the system. Dependencies
between nodes are static; most of them are among
nodes that belong to the same processor. For each
phase in the computation, each processor updates
the electromagnetic potential of its nodes based on
the potential of neighboring nodes. Only magnetic
nodes are taken into account when updating the elec-
tric nodes, and only electric nodes are looked at when
updating the magnetic nodes. While arbitrary graphs
of dependencies between nodes can be constructed,
the standard input assumes that nodes that belong to
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Program Problem Size Time (sec.)
SOR 3072x4096 (50Mbytes) 194.96
LU 2046x2046 (33Mbytes) 254.77
Water 4096 mols. (4Mbytes) 1847.56
TSP 17 cities (1Mbyte) 4028.95
Gauss 2046x2046 (33Mbytes) 953.71
ILINK CLP (15Mbytes) 898.97
Em3d 60106 nodes (49Mbytes) 161.43
Barnes 128K bodies (26Mbytes) 469.43

Table 2: Data Set Sizes and Sequential Execution Time of
Applications

a processor have dependencies only on nodes that
belong to that processor or neighboring processors.
Processors use barriers to synchronize between com-
putational phases.

Table 2 presents the data set sizes and uniprocessor ex-
ecution times for each of the eight applications, with the
size of shared memory space used in parentheses. The
execution times were measured by running each applica-
tion sequentially without linking it to either TreadMarks
or Cashmere.

4.3 Comparative Speedups

Figure 5 presents speedups for our applications on up to
32 processors. All calculations are with respect to the
sequential times in Table 2. The configurations we use are
as follows: 1 processor: trivial; 2: separate nodes; 4: one
processor in each of 4 nodes; 8: two processors in each of
4 nodes; 12: three processors in each of 4 nodes; 16: for
csm pp, two processors in each of 8 nodes, otherwise 4
processors in each of 4 nodes; 24: three processors in each
of 8 nodes; and 32: trivial, but not applicable to csm pp.

Table 3 presents detailed statistics on communication
and delays incurred by each of the applications on the
various protocol implementations, all at 16 processors.
The interrupt numbers in parentheses represent the number
of interrupts that actually result in signal handler dispatch.
Additional events are detected via polling at obvious places
within the protocol.

TSP displays nearly linear speedup for all our protocols.
Speedups are also reasonable in SOR and Water. Em3d,
LU, Ilink, Barnes, and Gauss have lower overall speedup.
Performance of Cashmere and TreadMarks is similar for
TSP, Water, and Em3d. Cashmere outperforms Tread-
Marks on Barnes. TreadMarks outperforms Cashmere by
significant amounts on LU and smaller amounts on SOR,
Gauss, and Ilink.

For Barnes, the differences in performance stem primar-
ily from Cashmere’s ability to merge updates from mul-

tiple writers into a single home node: TreadMarks must
generally merge diffs from multiple sources to update a
page in Barnes (note the high message count in Table 3).
The overhead of merging diffs is also a factor in Ilink. It
is balanced in part by the overhead of write doubling in
Cashmere. In the presence of false sharing (an issue in
Barnes and Water) it is also balanced by extra invalida-
tions and page faults, which TreadMarks avoids through
more careful tracking of the happens-before relationship.
Finally, in applications such as Ilink, which modify only
a small portion of a page between synchronization opera-
tions, the diffs of TreadMarks can be smaller than the page
reads of Memory-Channel Cashmere.

In Water, TSP, and Em3d, the various competing effects
more or less cancel out. It is difficult to draw conclusions
from TSP, because of its non-determinism.

Write doubling to internal rows of an SOR band is en-
tirely wasted in Cashmere, since no other processor ever
inspects those elements. The impact is reduced to some
extent by the “first write” placement policy, which ensures
that the doubled writes are local.

Cashmere suffers in SOR, LU, and Gauss from the use
of a single-writer optimization due to the lack of access to
dirty bits in our current implementation. The single-writer
optimization avoids the use of a dirty state and reduces
page faults at the expense of checking directory entries
for sharing at each release. In SOR, a processor must
inspect directory entries for interior rows on every release
to make sure there are no readers that need to receive write
notices. In LU and Gauss, the single-writer optimization
causes a writing processor to keep a copy of its blocks or
rows even when they are no longer being written. At each
release, the writer sends write notices to all the reading
processors, causing them to perform invalidations. If a
reader needs a page again, the fault it takes will be wasted,
because the data has not really been re-written. If all
readers are done with the page, the writer still wastes time
inspecting directory entries. With access to dirty bits, a
non-re-writtenpage would leave the writer’s write list, and
would not be inspected again.

The most dramatic differences between Cashmere and
TreadMarks occur in LU, and can be traced to cache ef-
fects. Specifically, the increase in cache pressure caused
by write doubling forces the working set of this applica-
tions out of the first-level cache of the 21064A. With a
32X32 block the primary working set of this application
is 16 Kbytes which fits entirely in the first level cache
of the 21064A. Write doubling increases the working set
to 24K for Cashmere forcing the application to work out
of the second level cache and thus significantly hurting
performance. Gauss exhibits similar behavior. In Gauss
the primary working set decreases over time as less rows
remain to be eliminated. For our problem size the working
set starts by not fitting in the first level cache for neither
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Application Sor LU Water TSP Gauss Ilink Em3d Barnes
CSM Barriers 832 2128 592 48 128 8352 4016 336

Locks 0 0 1200 2560 0 0 0 0
Read faults 4610 18426 47131 21907 115284 119713 188426 258053
Write faults 6140 4095 19460 8739 8181 23304 4440 191769
Interrupts 2429 7361 28156 18992 56261 47843 50853 57234
Directory updates (X103) 319 560 239 54 1296 329 555 725
Page transfers 7680 18431 47136 25349 115286 121948 188426 258076

Tmk Barriers 832 2128 608 48 160 8384 4016 336
Locks 0 0 1165 2552 68316 0 0 0
Read faults 4414 18165 42733 16329 106388 93232 187293 129694
Write faults 7199 4430 18721 8772 7924 27006 91659 195652
Interrupts (X103) 8(0.8) 25(3) 50(10) 25(2.2) 275(150) 138(21) 192(12) 1740(55)
Messages 16277 49437 99193 47419 490735 286969 384927 3479621
Data 59789 176036 317395 16953 737592 226769 452854 1411434

Table 3: Detailed Statistics at 16 Processors for the Interrupt Versions of Cashmere and TreadMarks

Cashmere nor Treadmarks. As it reduces in size it starts fit-
ting in the cache first for Treadmarks and at a later point for
Cashmere. The importance of the effect can be seen in the
single-processor numbers. When compiled for Cashmere
(with write doublingand protocoloperations), Gauss takes
about 1750 seconds on one processor. When compiled for
TreadMarks, it takes 950. Similarly, LU for Cashmere on
one processor takes 380 seconds; for TreadMarks it takes
250. In both cases, modifying the write-doubling code in
the Cashmere version so that it “doubles” all writes to a
single dummy address reduces the run time to only slightly
more than TreadMarks. On a machine with a larger first-
level cache (e.g. the 21264), we would not expect to see
the same magnitude of effect on performance.

In addition to the primary working set (data accessed in
the inner loop) Gauss has a secondary working set which
affects performance. The secondary working set for our
input size is 32Mbytes/P where P is the number of pro-
cessors. At 32 processors the data fits in the processor’s
second level cache resulting in a jump in performance
for the Cashmere protocols. Treadmarks does not experi-
ence the same performance jump due to memory pressure
effects. When running on 32 processors the memory re-
quirements on each node increase beyond what is available
in our SMPs. Swapping effects at that point limit perfor-
mance. Em3d also requires more memory than is available
and experiences a performance drop-off when run on 16
and 32 processors.

With the possible exception of TSP, whose results are
non-deterministic, polling for messages is uniformly better
than fielding signals in both TreadMarks and Cashmere.
The difference can be dramatic especially for TreadMarks,
with performance differences on 16 processors as high as
49% in Em3d and 60% in Barnes (the two applications
with the most amount of active sharing). Polling is also

uniformly better than fielding interrupts as a means of
emulating remote reads in Cashmere. The differences
are again largest in Em3d and Barnes, though generally
smaller than in TreadMarks, because the number of page
requests—the only events that require interrupts—in Cash-
mere is always significantly smaller than the number of
messages in TreadMarks (Table 3). The tradeoff between
polling and the use of a “protocol processor” is less clear
from our results, and there seems to be no clear incentive
for a protocol processor, if the sole use of the protocol
processor is to service page requests. Polling imposes
overhead in every loop, but often results in page requests
being serviced by a processor that has the desired data in
its cache. The protocol processor must generally pull the
requested data across the local bus before pushing it into
the Memory Channel. Hardware support for reads could
be expected to outperform either emulation: it would not
impose loop overhead, and would use DMA to ensure a
single bus traversal.

Additional bandwidth should also help Cashmere since
it has higher bandwidth requirements than Treadmarks.
While bandwidth effects are hard to quantify, we have ob-
served that applications perform significantly better when
bandwidth pressure is reduced. An 8-processor run of
Gauss, for example, is 40% faster with 2 processors on
each of 4 nodes than it is with 4 processors on each of
2 nodes. This result indicates that there is insufficient
bandwidth on the link between each SMP and MC, some-
thing that should be remedied in the next generation of the
network.
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5 Related Work

Distributed shared memory for workstation clusters is an
active area of research: many systems have been built,
and more have been designed. For purposes of discus-
sion we group them into systems that support more-or-less
“generic” shared-memory programs, such as might run on
a machine with hardware coherence, and those that require
a special programming notation or style.

5.1 “Generic” DSM

The original idea of using virtual memory to implement co-
herence on networks dates from Kai Li’s thesis work [25].
Nitzberg and Lo [29] provide a survey of early VM-based
systems. Several groups employed similar techniques to
migrate and replicate pages in early, cache-less shared-
memory multiprocessors [5, 10, 22]. Lazy, multi-writer
protocols were pioneered by Keleher et al. [19], and later
adopted by several other groups. Several of the ideas
in Cashmere were based on Petersen’s coherence algo-
rithms for small-scale, non-hardware-coherent multipro-
cessors [30]. Recent work by the Alewife group at MIT
has addressed the implementation of software coherence
on a collection of hardware-coherent nodes [39].

Wisconsin’s Blizzard system [34] maintains coherence
for cache-line-size blocks, either in software or by us-
ing ECC. It runs on the Thinking Machines CM-5 and
provides a sequentially-consistent programming model.
The more recent Shasta system [33], developed at DEC
WRL, extends the software-based Blizzard approach with
a relaxed consistency model and variable-size coherence
blocks. Like Cashmere, Shasta runs on the Memory Chan-
nel, with polling for remote requests. Rather than rely on
VM, however, it inserts consistency checks in-line when
accessing shared memory. Aggressive compiler optimiza-
tions attempt to keep the cost of checks as low as possible.

AURC [17] is a multi-writer protocol designed for the
Shrimp network interface [3]. Like TreadMarks, AURC
uses distributed information in the form of timestamps and
write notices to maintain sharing information. Like Cash-
mere, it relies on remote memory access to write shared
data updates to home nodes. Because the Shrimp interface
connects to the memory bus of its 486-based nodes, it is
able to double writes in hardware, avoiding a major source
of overhead in Cashmere. Experimental results for AURC
are currently based on simulation; implementation results
await the completion of a large-scale Shrimp testbed.

5.2 Special Programming Models

A variety of systems implement coherence entirely in
software, without VM support, but require programmers
to adopt a special programming model. In some sys-

tems, such as Split-C [11] and Shrimp’s Deliberate Up-
date [3], the programmer must use special primitives to
read and write remote data. In others, including Shared
Regions [31], Cid [28], and CRL [18], remote data is
accessed with the same notation used for local data, but
only in regions of code that have been bracketed by spe-
cial operations. The Midway system [40] requires the
programmer to associate shared data with synchroniza-
tion objects, allowing ordinary synchronization acquires
and releases to play the role of the bracketing operations.
Several other systems use the member functions of an
object-oriented programming model to trigger coherence
operations [8, 14, 36], or support inter-process communi-
cation via sharing of special concurrent objects [7, 32].

Because they provide the coherence system with in-
formation not available in more general-purpose systems,
special programming models have the potential to provide
superior performance. It is not yet clear to what extent the
extra effort required of programmers will be considered
an acceptable burden. In some cases, it may be possible
for an optimizing compiler to obtain the performance of
the special programming model without the special syn-
tax [13].

5.3 Fast User-Level Messages

The Memory Channel is not unique in its support for
user-level messages, though it is the first commercially-
available workstation network with such an interface.
Large shared memory multiprocessors have provided low-
latency interprocessor communication for many years,
originally on cache-less machines and more recently with
cache coherence. We believe that a system such as Cash-
mere would work well on a non-cache-coherent machine
like the Cray T3E. Fast user-level messages were sup-
ported without shared memory on the CM-5, though the
protection mechanism was relatively static.

Among workstation networks, user-level IPC can also
be found in the Princeton Shrimp [3], the HP Hamlyn
interface [6] to Myrinet [4], and Dolphin’s snooping inter-
face [26] for the SCI cache coherence protocol [16].

6 Conclusion and Future Work

We have presented results for two different DSM
protocols—Cashmere and TreadMarks—on a remote-
memory-access network, namely DEC’s Memory Chan-
nel. TreadMarks uses the Memory Channel only for fast
messaging, while Cashmere uses it for directory mainte-
nance and for fine-grained updates to shared data. Our
work is among the first comparative studies of fine and
coarse-grained DSM to be based on working implementa-
tions of “aggressively lazy” protocols.
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Our principal conclusion is that low-latency networks
make fine-grain DSM competitive with more coarse-grain
approaches, but that further hardware improvements will
be needed before such systems can provide consistently
superior performance. TreadMarks requires less frequent
communication and lower total communication band-
width, but suffers from the computational overhead of
twinning and diffing, which occur on the program’s criti-
cal path, from the need to interrupt remote processors (or
otherwise get their attention), and from the propagation
of unnecessary write notices, especially on larger config-
urations. Cashmere moves much of the overhead of write
collection off of the critical path via write-through, and
eliminates the need for synchronous remote operations
(other than emulated page reads), but at the expense of
much more frequent communication, higher communica-
tion bandwidth, and (in the absence of snoopinghardware)
significant time and cache-footprint penalties for software
write doubling. Unlike TreadMarks, Cashmere sends
write notices only to processors that are actually using
the modified data, thereby improving scalability (though
the use of global time can sometimes lead to invalidations
not required by the happens-before relationship).

Polling for remote requests is a major win in Tread-
Marks, due to the frequency of request-reply communica-
tion. Polling is less important in Cashmere, which uses it
only to get around the lack of a remote-read mechanism:
polling works better than remote interrupts, and is gener-
ally comparable in performance to emulating remote reads
with a dedicated processor.

The fact that Cashmere is able to approach (and some-
times exceed) the performance of TreadMarks on the cur-
rent Memory Channel suggests that DSM systems based
on fine-grain communication are likely to out-perform
more coarse-grain alternatives on future remote-memory-
access networks. Many of the most severe constraints on
our current Cashmere implementation result from hard-
ware limitations that are likely to disappear in future sys-
tems. Specifically, we expect the next generation of the
Memory Channel to cut latency by more than half, to
increase aggregate bandwidth by more than an order of
magnitude, and to significantly reduce the cost of synchro-
nization. These changes will improve the performance of
TreadMarks, but should help Cashmere more. Eventu-
ally, we also expect some sort of remote read mechanism,
though probably not remote cache fills. It seems unlikely
that inexpensive networks will provide write doubling in
hardware, since this requires snooping on the memory
bus. The impact of software write doubling on cache foot-
print, however, should be greatly reduced on newer Alpha
processors with larger first and second level caches. In
addition, access to the TLB/page table dirty bit (currently
in the works) will allow us to make protocol changes that
should largely eliminate unnecessary invalidations.

We are currently pursuing several improvements to the
Cashmere implementation. In addition to using dirty bits,
we plan to experiment with hierarchical locking for direc-
tories [37] and with alternatives to write-doubling based
on twins and diffs or on software dirty bits [33]. To reduce
page fault handling overhead (both for TreadMarks and for
Cashmere), we plan to modify the kernel to eliminate the
need for mprotect system calls. When a page is present
but not accessible, the kernel will make the page writable
before delivering the sig segv signal, and will allow the
return call from the handler to specify new permissions
for the page. This capability should be useful not only
for DSM, but for any application that uses virtual mem-
ory protection to catch accesses to particular pages [2].
At a more aggressive level, we plan to evaluate the per-
formance impact of embedding the page-fault handling
software directly in the kernel.

We are also continuing our evaluation of protocol al-
ternatives. Cashmere and TreadMarks differ in two fun-
damental dimensions: the mechanism used to manage
coherence information (directories v. distributed intervals
and timestamps) and the mechanism used to collect data
updates (write-through v. twins and diffs). The Princeton
AURC protocol [17] combines the TreadMarks approach
to coherence management with the Cashmere approach
to write collection. We plan to implement AURC on
the Memory Channel, and to compare it to Cashmere,
to TreadMarks, and to the fourth alternative, which would
combine directories with twins and diffs (or with software
dirty bits). In addition, we are developing multi-level pro-
tocols that take advantage of hardware coherence within
each AlphaServer node, and that also allow a remote-
memory-access cluster to function as a single node of a
larger, message-based shared-memory system. Finally, we
are continuing our research into the relationship between
run-time coherence management and static compiler anal-
ysis [13].
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